FANDOM


Plantilla:Artículo destacado

Para otros usos de este término, véase Sol (desambiguación).
El Sol30px
Imagen del Sol en longitudes de onda del visible.
Datos derivados de la observación
Distancia media desde la Tierra 149.597.871 km (~1,5 × 1011 m)
Brillo visual (V) –26,8m
Magnitud absoluta 4,8m
Diám. angular en el perihelio 32' 35,64"
Diám. angular en el afelio 31' 31,34"
Características físicas
Diámetro 1.392.000 km (~1,4 × 109 m)
Diámetro relativo (dS/dT) 109
Superficie 6,09 × 1018 m2
Volumen 1,41 × 1027 m3
Masa 1,9891 × 1030 kg
Masa relativa a la de la Tierra 333400x
Densidad 1411 kg/m3
Densidad relativa a la de la Tierra 0,26x
Densidad relativa al agua 1,41x
Gravedad en la superficie 274 m/s2 (27,9 g)
Temperatura de la superficie 5780 K
Temperatura de la corona 5 × 106 K
Temperatura del núcleo ~1,36 × 107 K
Luminosidad (LS) 3,827 × 1026 W
Características orbitales
Periodo de rotación
En el ecuador: 27d 6h 36min
A 30° de latitud: 28d 4h 48min
A 60° de latitud: 30d 19h 12min
A 75° de latitud: 31d 19h 12min
Periodo orbital alrededor del
centro galáctico
2,2 × 108 años
Composición de la fotosfera
Hidrógeno 73,46%
Helio 24,85%
Oxígeno 0,77%
Carbono 0,29%
Hierro 0,16%
Neón 0,12%
Nitrógeno 0,09%
Silicio 0,07%
Magnesio 0,05%
Azufre 0,04%

El Sol es la estrella del sistema planetario en el que se encuentra la Tierra; por tanto, es la más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo determinan, respectivamente, el día y la noche. La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, siendo así la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5000 millones de años y permanecerá en la secuencia principal aproximadamente otros 5000 millones de años. El Sol, junto con la Tierra y todos los cuerpos celestes que orbitan a su alrededor, forman el Sistema Solar.

A pesar de ser una estrella mediana, es la única cuya forma se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Por una extraña coincidencia, la combinación de tamaños y distancias del Sol y la Luna son tales que se ven, aproximadamente, con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales).

Nacimiento y muerte del Sol Editar

Artículos principales: Evolución estelar y Nebulosa protosolar
The sun1

El Sol visto a través de las lentes de una cámara fotográfica desde la superficie terrestre.

El Sol se formó hace unos 4500 millones de años a partir de nubes de gas y polvo que contenían residuos de generaciones anteriores de estrellas. Gracias a la metalicidad de dicho gas, de su disco circumstelar surgieron, más tarde, los planetas, asteroides y cometas del Sistema Solar. En el interior del Sol se producen reacciones de fusión en las que los átomos de hidrógeno se transforman en helio, produciéndose la energía que irradia. Actualmente, el Sol se encuentra en plena secuencia principal, fase en la que seguirá unos 5000 millones de años más quemando hidrógeno de manera estable.

Llegará un día en que el Sol agote todo el hidrógeno en la región central al haberlo transformado en helio. La presión será incapaz de sostener las capas superiores y la región central tenderá a contraerse gravitacionalmente, calentando progresivamente las capas adyacentes. El exceso de energía producida hará que las capas exteriores del Sol tiendan a expandirse y enfriarse y el Sol se convertirá en una estrella gigante roja. El diámetro puede llegar a alcanzar y sobrepasar al de la órbita de la Tierra, con lo cual, cualquier forma de vida se habrá extinguido. Cuando la temperatura de la región central alcance aproximadamente 100 millones de kelvins, comenzará a producirse la fusión del helio en carbono mientras alrededor del núcleo se sigue fusionando hidrógeno en helio. Ello producirá que la estrella se contraiga y disminuya su brillo a la vez que aumenta su temperatura, convirtiéndose el Sol en una estrella de la rama horizontal. Al agotarse el helio del núcleo, se iniciará una nueva expansión del Sol y el helio empezará también a fusionarse en una nueva capa alrededor del núcleo inerte -compuesto de carbono y oxígeno y que por no tener masa suficiente el Sol no alcanzará las presiones y temperaturas suficientes para fusionar dichos elementos en elementos más pesados- que lo convertirá de nuevo en una gigante roja, pero ésta vez de la rama asintótica gigante y provocará que el astro expulse gran parte de su masa en la forma de una nebulosa planetaria, quedando únicamente el núcleo solar que se transformará en una enana blanca y, mucho más tarde, al enfriarse totalmente, en una enana negra. El Sol no llegará a estallar como una supernova al no tener la masa suficiente para ello.

Si bien se creía en un principio que el Sol acabaría por absorber además de Mercurio y Venus a la Tierra al convertirse en gigante roja, la gran pérdida de masa que sufrirá en el proceso hizo pensar por un tiempo que la órbita terrestre -al igual que la de los demás planetas del Sistema Solar- se expandiría posiblemente salvándola de ése destino.[1] Sin embargo, un artículo reciente postula que ello no ocurrirá y que las interacciones mareales así cómo el roce con la materia de la cromosfera solar harán que nuestro planeta sea absorbido.[2] Otro artículo posterior también apunta en la misma dirección.[3]

Estructura del Sol Editar

Artículo principal: Estructura estelar

Como toda estrella el Sol posee una forma esférica, y a causa de su lento movimiento de rotación, tiene también un leve achatamiento polar. Como en cualquier cuerpo masivo toda la materia que lo constituye es atraída hacia el centro del objeto por su propia fuerza gravitatoria. Sin embargo, el plasma que forma el Sol se encuentra en equilibrio ya que la creciente presión en el interior solar compensa la atracción gravitatoria produciéndose un equilibrio hidrostático. Estas enormes presiones se generan debido a la densidad del material en su núcleo y a las enormes temperaturas que se dan en él gracias a las reacciones termonucleares que allí acontecen. Existe además de la contribución puramente térmica una de origen fotónico. Se trata de la presión de radiación, nada despreciable, que es causada por el ingente flujo de fotones emitidos en el centro del Sol.

El Sol presenta una estructura en capas esféricas o en "capas de cebolla". La frontera física y las diferencias químicas entre las distintas capas son difíciles de establecer. Sin embargo, se puede establecer una función física que es diferente para cada una de las capas. En la actualidad, la astrofísica dispone de un modelo de estructura solar que explica satisfactoriamente la mayoría de los fenómenos observados. Según este modelo, el Sol está formado por: 1) Núcleo, 2) Zona radiante, 3) Zona convectiva, 4) Fotosfera, 5) Cromosfera, 6) Corona y 7) Viento solar.

Núcleo Editar

Artículos principales: Nucleosíntesis estelar, Cadenas PP y Ciclo CNO

Ocupa unos 139 000 km del radio solar, 1/5 del mismo, y es en esta zona donde se verifican las reacciones termonucleares que proporcionan toda la energía que el Sol produce. El Sol está constituido por un 81 % de hidrógeno, 18 % de helio y el 1 % restante que se reparte entre otros elementos. En su centro se calcula que existe un 49 % de hidrógeno, 49 % de helio y el 2 % restante en otros elementos que sirven como catalizadores en las reacciones termonucleares. A comienzos de la década de los años 30 del siglo XX, el físico austriaco Fritz Houtermans (1903-1966) y el astrónomo inglés Robert d'Escourt Atkinson (1898-1982) unieron sus esfuerzos para averiguar si la producción de energía en el interior del Sol y en las estrellas se podía explicar por las transformaciones nucleares. En 1938 Hans Albrecht Bethe (1906-2005) en Estados Unidos y Karl Friedrich von Weizsäker (1912-), en Alemania, simultánea e independientemente, encontraron el hecho notable de que un grupo de reacciones en las que intervienen el carbono y el nitrógeno como catalizadores constituyen un ciclo, que se repite una y otra vez, mientras dura el hidrógeno. A este grupo de reacciones se las conoce como "ciclo de Bethe o del carbono", y es equivalente a la fusión de cuatro protones en un núcleo de helio. En estas reacciones de fusión hay una pérdida de masa, esto es, el hidrógeno consumido pesa más que el helio producido. Esa diferencia de masa se transforma en energía según la ecuación de Einstein (E = mc2), donde E es la energía, m la masa y c la velocidad de la luz. Estas reacciones nucleares transforman el 0,7 % de la masa afectada en fotones, con una longitud de onda cortísima y, por lo tanto, muy energéticos y penetrantes. La energía producida mantiene el equilibrio térmico del núcleo solar a temperaturas aproximadamente de 15 millones de kelvins. El ciclo ocurre en las siguientes etapas:

1H1 + 6C127N13;
7N136C13 + e+ + neutrino;
1H1 + 6C137N14;
1H1 + 7N148O15;
8O157N15 + e+ + neutrino, y por último
1H1 + 7N156C12 + 2He4.

Sumando todas las reacciones y cancelando los términos comunes, se tiene

4 1H12He4 + 2e+ + 2 neutrinos + 26,7 MeV.

La energía neta liberada en el proceso es 26,7 MeV, o sea cerca de 6,7·1014 J por kg de protones consumidos. El carbono actúa como catalizador, pues al final del ciclo se regenera.

Otra reacción de fusión que ocurre en el Sol y en las estrellas, es el ciclo de Critchfiel o protón-protón. Charles Critchfield (1910-1994) era en 1938 un joven físico alumno de George Gamow (1904-1968) en la Universidad de George Washington, y tuvo una idea completamente diferente, al darse cuenta que en el choque entre dos protones muy rápidos puede ocurrir que uno pierda su carga positiva y se convierta en un neutrón, que permanece unido al otro protón constituyendo un deuterón, es decir, un núcleo de hidrógeno pesado. La reacción puede producirse de dos maneras algo distintas:

1H1 + 1H12H2 + e+ + neutrino
1H1 + 1H22He3; 2He3 + 2He32He4 + 2 1H1.

El primer ciclo se da en estrellas más calientes y con mayor masa que el Sol, y la cadena protón-protón en las similares al Sol. En cuanto al Sol, hasta el año 1953 creyó que su energía era producida casi exclusivamente por el ciclo de Bethe, pero se demostró durante estos últimos años que el calor solar viene en la mayoría (~75%) del ciclo protón-protón.

En los últimos estadios de su evolución, el Sol fusionará el helio producto de éstos procesos para dar carbono y oxígeno. Ver Proceso triple-alfa

Zona radiante Editar

En la zona exterior al núcleo el transporte de la energía generada en el interior se produce por radiación hasta el límite exterior de la zona radiativa. Esta zona está compuesta de plasma, es decir, grandes cantidades de hidrógeno y helio ionizado. Como la temperatura del Sol decrece del centro (15 MK) a la periferia (6 kK en la fotosfera), es más fácil que un fotón cualquiera se mueva del centro a la periferia que al revés. Sin embargo, los fotones deben avanzar por un medio ionizado tremendamente denso siendo absorbidos y reemitidos infinidad de veces en su camino. Se calcula que un fotón cualquiera invierte un millón de años en alcanzar la superficie y manifestarse como luz visible.

Zona convectiva Editar

Esta región se extiende por encima de la zona radiativa y en ella los gases solares dejan de estar ionizados y los fotones son absorbidos con facilidad volviéndose el material opaco al transporte de radiación. Por lo tanto, el transporte de energía se realiza por convección, de modo que el calor se transporta de manera no homogénea y turbulenta por el propio fluido. Los fluidos se dilatan al ser calentados y disminuyen su densidad. Por lo tanto, se forman corrientes ascendentes de material desde la zona caliente hasta la zona superior, y simultáneamente se producen movimientos descendentes de material desde las zonas exteriores frías. Así a unos 200 000 km bajo la fotosfera del Sol, el gas se vuelve opaco por efecto de la disminución de la temperatura; en consecuencia, absorbe los fotones procedentes de las zonas inferiores y se calienta a expensas de su energía. Se forman así secciones convectivas turbulentas, en las que las parcelas de gas caliente y ligero suben hasta la fotosfera, donde nuevamente la atmósfera solar se vuelve transparente a la radiación y el gas caliente cede su energía en forma de luz visible, enfriándose antes de volver a descender a las profundidades. El análisis de las oscilaciones solares ha permitido establecer que esta zona se extiende hasta estratos de gas situados a la profundidad indicada anteriormente. La observación y estudio de estas oscilaciones solares constituye el sujeto de estudio de la heliosismología.

Fotosfera Editar

Artículo principal: Fotosfera

La fotosfera es la zona desde la que se emite la mayor parte de luz visible del Sol. La fotosfera se considera como la «superficie» solar y, vista a través de un telescopio, se presenta formada por gránulos brillantes que se proyectan sobre un fondo más oscuro. A causa de la agitación de nuestra atmósfera, estos gránulos parecen estar siempre en agitación. Puesto que el Sol es gaseoso, su fotosfera es algo transparente: puede ser observada hasta una profundidad de unos cientos de kilómetros antes de volverse completamente opaca. Normalmente se considera que la fotosfera solar tiene unos 100 o 200 km de profundidad.

Archivo:Sun spot diag Lmb.png

Aunque el borde o limbo del Sol aparece bastante nítido en una fotografía o en la imagen solar proyectada con un telescopio, se aprecia fácilmente que el brillo del disco solar disminuye hacia el borde. Este fenómeno de oscurecimiento del centro al limbo es consecuencia de que el Sol es un cuerpo gaseoso con una temperatura que disminuye con la distancia al centro. La luz que se ve en el centro procede en la mayor parte de las capas inferiores de la fotosfera, más caliente y por tanto más luminosa. Al mirar hacia el limbo, la dirección visual del observador es casi tangente al borde del disco solar por lo que llega radiación procedente sobre todo de las capas superiores de la fotosfera, más frías y emitiendo con menor intensidad que las capas profundas en la base de la fotosfera.

Un fotón tarda en promedio un millón de años en atravesar la zona radiante y un mes en recorrer los 200 000 km de la zona convectiva, empleando tan sólo unos 500 s en cruzar la distancia que separa la Tierra del Sol. No se trata de que los fotones viajen más rápidamente ahora, sino que en el exterior del Sol el camino de los fotones no se ve obstaculizado por los continuos cambios, choques, quiebros y turbulencias que experimentaban en el interior del Sol.

Los gránulos brillantes de la fotosfera tienen muchas veces forma hexagonal y están separados por finas líneas oscuras. Los gránulos son la evidencia del movimiento convectivo y burbujeante de los gases calientes en la parte exterior del Sol. En efecto, la fotosfera es una masa en continua ebullición en el que las células convectivas se aprecian como gránulos en movimiento cuya vida media es tan solo de unos nueve minutos. El diámetro medio de los gránulos individuales es de unos 700 a 1000 km y resultan particularmente notorios en los períodos de mínima actividad solar. Hay también movimientos turbulentos a una escala mayor, la llamada "supergranulación", con diámetros típicos de unos 35 000 km. Cada supergranulación contiene cientos de gránulos individuales y sobrevive entre 12 a 20 horas. Fue Richard Christopher Carrington (1826-1875), cervecero y astrónomo aficionado, el primero en observar la granulación fotosférica en el siglo XIX. En 1896 el francés Pierre Jules César Janssen (1824-1907) consiguió fotografiar por primera vez la granulación fotosférica.

Archivo:Sunspot-2004.jpeg

El signo más evidente de actividad en la fotosfera son las manchas solares. En los tiempos antiguos se consideraba al Sol como un fuego divino y, por consiguiente, perfecto e infalible. Del mismo modo se sabía que la brillante cara del Sol estaba a veces nublada con unas manchas oscuras, pero se imaginaba que era debido a objetos que pasaban en el espacio entre el Sol y la Tierra. Cuando Galileo (1564-1642) construyó el primer telescopio astronómico, dando origen a una nueva etapa en el estudio del Universo, hizo la siguiente afirmación "Repetidas observaciones me han convencido, de que estas manchas son sustancias en la superficie del Sol, en la que se producen continuamente y en la que también se disuelven, unas más pronto y otras más tarde". Una mancha solar típica consiste en una región central oscura, llamada "umbra", rodeada por una "penumbra" más clara. Una sola mancha puede llegar a medir hasta 12 000 km (casi tan grande como el diámetro de la Tierra), pero un grupo de manchas puede alcanzar 120 000 km de extensión e incluso algunas veces más. La penumbra está constituida por una estructura de filamentos claros y oscuros que se extienden más o menos radialmente desde la umbra. Ambas (umbra y penumbra) parecen oscuras por contraste con la fotosfera, simplemente porque están más frías que la temperatura media de la fotosfera. Así, la umbra tiene una temperatura de 4000 K, mientras que la penumbra alcanza los 5600 K, inferiores en ambos casos a los 6000 K que tienen los gránulos de la fotosfera. Por la ley de Stefan-Boltzmann, en que la energía total radiada por un cuerpo negro (como una estrella) es proporcional a la cuarta potencia de su temperatura efectiva (E = σT4, donde σ = 5,67051·10−8 W/m2·K4 ), la umbra emite aproximadamente un 32% de la luz emitida por un área igual de la fotosfera y análogamente la penumbra tiene un brillo de un 71% de la fotosfera. La oscuridad de una mancha solar está causada únicamente por un efecto de contraste; si pudiéramos ver a una mancha tipo, con una umbra del tamaño de la Tierra, aislada y a la misma distancia que el Sol, brillaría una 50 veces más que la Luna llena. Las manchas están relativamente inmóviles con respecto a la fotosfera y participan de la rotación solar. El área de la superficie solar cubierta por las manchas se mide en términos de millonésima del disco visible.

Cromosfera Editar

Artículo principal: Cromosfera

La cromosfera es una capa exterior a la fotosfera visualmente mucho más transparente. Su tamaño es de aproximadamente unos 10 000 km y es imposible observarla sin filtros especiales al ser eclipsada por el mayor brillo de la fotosfera. La cromosfera puede observarse sin embargo en un eclipse solar en un tono rojizo característico y en longitudes de onda específicas, notablemente en , una longitud de onda característica de la emisión por hidrógeno a muy alta temperatura.

Las prominencias solares ascienden ocasionalmente desde la fotosfera alcanzando alturas de hasta 150 000 km produciendo erupciones solares espectaculares.

Corona solar Editar

La corona solar está formada por las capas más tenues de la atmósfera superior solar. Su temperatura alcanza los millones de kelvin, una cifra muy superior a la de la capa que le sigue, la fotosfera, siendo esta inversión térmica uno de los principales enigmas de la ciencia solar reciente. Estas elevadísimas temperaturas son un dato engañoso y consecuencia de la alta velocidad de las pocas partículas que componen la atmósfera solar. Sus grandes velocidades son debidas a la baja densidad del material coronal, a los intensos campos magnéticos emitidos por el Sol y a las ondas de choque que rompen en la superficie solar estimuladas por las células convectivas. Como resultado de su elevada temperatura, desde la corona se emite gran cantidad de energía en rayos X. En realidad, estas temperaturas no son más que un indicador de las altas velocidades que alcanza el material coronal que se acelera en las líneas de campo magnético y en dramáticas eyecciones de material coronal (EMCs). Lo cierto es que esa capa es demasiado poco densa como para poder hablar de temperatura en el sentido usual de agitación térmica.

La corona solar solamente es observable desde el espacio con instrumentos adecuados que anteponen un disco opaco para eclipsar artificialmente al Sol o durante un eclipse solar natural desde la Tierra. El material tenue de la corona es continuamente expulsado por la fuerte radiación solar dando lugar a un viento solar. Así pues, se cree que las estructuras observadas en la corona están modeladas en gran medida por el campo magnético solar y las células de transporte convectivo.

CME Editar

Artículo principal: Tormenta geomagnética
Archivo:Sun in X-Ray.png

La CME es una onda hecha de radiación y viento solar que se desprende del Sol en el periodo llamado Actividad Máxima Solar. Esta onda es muy peligrosa ya que daña los circuitos eléctricos, los transformadores y los sistemas de comunicación. Cuando esto ocurre, se dice que hay una tormenta solar.

  • Cada 11 años, el Sol entra en un turbulento ciclo (Actividad Máxima Solar) que representa la época más propicia para que el planeta sufra una tormenta solar.
  • El próximo máximo solar ocurrirá en el año 2011.[4]
  • Una potente tormenta solar es capaz de paralizar por completo la red eléctrica de las grandes ciudades, una situación que podría durar semanas, meses o incluso años.
  • La ciudad de Nueva York posee la red eléctrica más vulnerable de la costa este de los Estados Unidos.
  • Las tormentas solares pueden causar interferencias en las señales de radio, afectar a los sistemas de navegación aéreos, dañar las señales telefónicas e inutilizar satélites por completo.
  • El 13 de marzo de 1989, la ciudad de Québec, en Canadá, fue azotada por una fuerte tormenta solar. Como resultado de ello, seis millones de personas se vieron afectadas por un gran apagón que duró 90 segundos. La red eléctrica de Montreal estuvo paralizada durante más de nueve horas. Los daños que provocó el apagón, junto con las pérdidas originadas por la falta de energía, alcanzaron los cientos de millones de dólares.
  • Entre los días 1 y 2 de septiembre de 1859, una intensa tormenta solar afectó a la mayor parte del planeta. Las líneas telegráficas de los Estados Unidos y el Reino Unido quedaron inutilizadas y se provocaron varios incendios. Además, una impresionante aurora boreal, fenómeno que normalmente sólo puede observarse desde las regiones árticas, pudo verse en lugares tan alejados entre sí como Roma o Hawai.

Importancia de la energía solar en la Tierra Editar

La mayor parte de la energía utilizada por los seres vivos procede del Sol, las plantas la absorben directamente y realizan la fotosíntesis, los herbívoros absorben indirectamente una pequeña cantidad de esta energía comiendo las plantas, y los carnívoros absorben indirectamente una cantidad más pequeña comiendo a los herbívoros.

La mayoría de las fuentes de energía usadas por el hombre derivan indirectamente del Sol. Los combustibles fósiles preservan energía solar capturada hace millones de años mediante fotosíntesis, la energía hidroeléctrica usa la energía potencial de agua que se condesó en altura después de haberse evaporado por el calor del Sol, etc.

Sin embargo, el uso directo de energía solar para la obtención de energía no está aún muy extendido debido a que los mecanismos actuales no son suficientemente eficaces.

Reacciones termonucleares e incidencia sobre la superficie terrestre Editar

Una mínima cantidad de materia puede convertirse en una enorme manifestación de energía. Esta relación entre la materia y la energía explica la potencia del Sol, que hace posible la vida. ¿Cuál es la equivalencia? En 1905, Einstein había predicho una equivalencia entre la materia y la energía mediante su ecuación E=mc². Una vez que Einstein formuló la relación, los científicos pudieron explicar por qué ha brillado el Sol por miles de millones de años. En el interior del Sol se producen continuas reacciones termonucleares. De este modo, el Sol convierte cada segundo unos 564 millones de toneladas de hidrógeno en 560 millones de toneladas de helio, lo que significa que unos cuatro millones de toneladas de materia se transforman en energía solar, una pequeña parte de la cual llega a la Tierra y sostiene la vida.

Observación astronómica del Sol Editar

Las primeras observaciones astronómicas de la actividad solar fueron realizadas por Galileo Galilei utilizando el método de proyección. Galileo descubrió así las manchas solares y pudo medir la rotación solar así como percibir la variabilidad de éstas. En la actualidad la actividad solar es monitorizada constantemente por observatorios astronómicos terrestres y observatorios espaciales. Entre los objetivos de estas observaciones se encuentra no solo alcanzar una mayor comprensión de la actividad solar sino también la predicción de sucesos de elevada emisión de partículas potencialmente peligrosas para las actividades en el espacio y las telecomunicaciones terrestres.

Exploración solar Editar

Para obtener una visión ininterrumpida del Sol en longitudes de onda inaccesibles desde la superficie terrestre la Agencia Espacial Europea y NASA lanzaron cooperativamente el satélite SOHO (Solar and Heliospheric Observatory) el 2 de diciembre de 1995. La sonda europea Ulysses realizó estudios de la actividad solar y la sonda norteamericana Génesis se lanzó en un vuelo cercano a la heliosfera para regresar a la Tierra con una muestra directa del material solar. Génesis regresó a la Tierra en el 2004 pero su reentrada en la atmósfera fue acompañada de un fallo en su paracaídas principal que hizo que se estrellara sobre la superficie. El análisis de las muestras obtenidas prosigue en la actualidad.

Precauciones necesarias para observar el Sol Editar

  • No mirar nunca directamente al Sol sin la debida protección, puede causar lesiones y quemaduras graves en los ojos e incluso la ceguera permanente.
  • Las gafas de sol, filtros hechos con película fotográfica velada, polarizadores, gelatinas, CDs o cristales ahumados no ofrecen la suficiente protección a los ojos.

Referencias Editar

Bibliografía Editar

  • Bonanno A, Schlattl H, Paternò L: "The age of the Sun and the relativistic corrections in the EOS". Astronomy and Astrophysics. 2002;390:1115-18.
  • Carslaw KS, Harrison RG, Kirkby J: "Cosmic Rays, Clouds, and Climate". Science. 2002;298:1732-37.
  • Kasting, JF, Ackerman TP: "Climatic Consequences of Very High Carbon Dioxide Levels in the Earth’s Early Atmosphere". Science. 1986;234:1383-85.
  • Priest, Eric Ronald: Solar Magnetohydrodynamics. Dordrecht: D. Reidel Pub., 1982, p. 206-245. ISBN 90-277-1374-X
  • Schlattl H: "Three-flavor oscillation solutions for the solar neutrino problem", Physical Review D. 2001;64(1).
  • Thompson MJ: "Solar interior: Helioseismology and the Sun's interior", Astronomy & Geophysics. 2004;45(4):21-25.

Véase también Editar

Enlaces externos Editar

Plantilla:Info

Generales
Observación del Sol

af:Son ak:Ewia als:Sonne am:ፀሐይ an:Sol ang:Sunne ar:شمس arc:ܫܡܫܐ ast:Sol ay:Willka az:Günəş ba:Ҡояш bat-smg:Saulė bcl:Saldang be:Сонца be-x-old:Сонца bg:Слънце bn:সূর্য br:Heol bs:Sunce ca:Sol cdo:Nĭk-tàu cr:ᒌᔑᑳᐅᐲᓯᒻ cs:Slunce cu:Слъньцє cv:Хĕвел cy:Haul da:Solendv:އިރު el:Ήλιοςeo:Suno et:Päike eu:Eguzkia fa:خورشید fi:Aurinko fiu-vro:Päiv fo:Sólinfrp:Solely fur:Soreli fy:Sinne ga:An Ghrian gd:A' Ghrian gl:Sol gn:Kuarahy gu:સૂર્ય gv:Yn Ghrian haw:Lā he:השמש hi:सूर्य hr:Sunce ht:Solèy hu:Nap hy:Արև ia:Sol id:Matahari ilo:Init io:Suno is:Sólin it:Sole iu:ᓯᕿᓂᖅ/siqiniqjbo:solri jv:Srengéngé ka:მზე kk:Күн (жұлдыз) kn:ಸೂರ್ಯku:Ro kv:Шонді kw:Howl la:Sol lad:Sol lb:Sonn li:Zon lij:Sô ln:Mói lt:Saulė lv:Saule map-bms:Srengenge mk:Сонце ml:സൂര്യന്‍ mr:सूर्य ms:Matahari mt:Xemx my:နေ myv:Чи (пертпельксэнь вал) nah:Tōnatiuh nap:Sole nds:Sünn nds-nl:Zunne ne:सूर्य nl:Zon nn:Sola no:Solen nov:Sune nrm:Solé nv:Jóhonaa’éí oc:Solelh pa:ਸੂਰਜ pam:Aldo pdc:Sunn pl:Słońce pnt:Ήλος pt:Sol qu:Inti rm:Sulegl rmy:Kham ro:Soaresah:Күн (сулус) scn:Suli sco:Sun se:Beaivváš sh:Sunce simple:Sun sk:Slnko sl:Sonce sq:Dielli sr:Сунце su:Panonpoé sv:Solen sw:Jua szl:Suůńce ta:சூரியன் te:సూర్యుడు tg:Офтоб th:ดวงอาทิตย์ tl:Araw (astronomiya) tr:Güneş tw:Ewia uk:Сонце ur:سورج uz:Quyosh vec:Sołe vi:Mặt Trời vo:Sol wo:Jant wuu:太阳 yi:זון yo:Òòrùnzh-classical:日 zh-min-nan:Ji̍t-thâu zh-yue:太陽

¡Interferencia de bloqueo de anuncios detectada!


Wikia es un sitio libre de uso que hace dinero de la publicidad. Contamos con una experiencia modificada para los visitantes que utilizan el bloqueo de anuncios

Wikia no es accesible si se han hecho aún más modificaciones. Si se quita el bloqueador de anuncios personalizado, la página cargará como se esperaba.