FANDOM


Para otros usos de este término, véase Atmósfera (desambiguación).
Archivo:PIA04866 modest.jpg

La atmósfera (del griego ἀτμός, vapor, aire, y σφαῖρα, esfera) es la capa de gas que puede rodear un cuerpo celeste con la suficiente masa como para atraerlos si además la temperatura atmosférica es baja. Algunos planetas están formados principalmente de varios gases, y así tiene las atmósferas muy profundas.

Las atmósferas de los planetas del sistema solar Editar

Venus Editar

Archivo:Venuspioneeruv.jpg
Artículo principal: Atmósfera de Venus

Venus posee una densa atmósfera, su presión atmosférica equivale a 90 atmósferas terrestres (una presión equivalente a una profundidad de un kilómetro bajo el nivel del mar en la Tierra). Está compuesta principalmente por dióxido de carbono y una pequeña cantidad de monóxido de carbono, nitrógeno, ácido sulfúrico y argón, nubes de ácido sulfúrico y partículas de azufre. La enorme cantidad de CO2 de la atmósfera provoca un fuerte efecto invernadero que eleva la temperatura de la superficie del planeta hasta cerca de 460ºC. Esto hace que Venus sea más caliente que Mercurio.

La temperatura no varía de forma significativa entre el día y la noche. A pesar de la lenta rotación de Venus, los vientos de la atmósfera superior circunvalan el planeta en tan sólo 4 días, alcanzando velocidades de 360 km/h y distribuyendo eficazmente el calor. Además del movimiento zonal de la atmósfera de Oeste a Este, hay un movimiento vertical en forma de célula de Hadley que transporta el calor del Ecuador hasta las zonas polares e incluso a latitudes medias del lado no iluminado del planeta.

La radiación solar casi no alcanza la superficie del planeta. La densa capa de nubes refleja al espacio la mayoría de la luz del Sol y la mayor parte de la luz que atraviesa las nubes es absorbida por la atmósfera.

Tierra Editar

Artículo principal: Atmósfera terrestre

Su altura es de más de 100 km, aunque más de la mitad de su masa se concentra en los 6 primeros km y el 75% en los primeros 11 km de altura desde la superficie planetaria. La masa de la atmósfera es de 5,1 x 10 18 kg. Su radio es de más de 12 mil kilómetros.

Está compuesta por nitrógeno (78,1%) y oxígeno (20,94%), con pequeñas cantidades de argón (0,93%), dióxido de carbono (variable, pero alrededor de 0,035%), vapor de agua, neón (0,00182%), helio (0,000524%), kriptón (0,000114%), hidrógeno (0,00005%), ozono (0,00116%), metano y CFC, entre otros.

La atmósfera terrestre protege la vida de la Tierra absorbiendo en la capa de ozono parte de la radiación solar ultravioleta, y reduciendo las diferencias de temperatura entre el día y la noche, y actuando como escudo protector contra los meteoritos, asteroides y demás cuerpos celestes.

Marte Editar

Archivo:Mars atmosphere.jpg
Artículo principal: Atmósfera de Marte

La atmósfera de Marte es muy tenue con una presión superficial de sólo 7 a 9 hPa frente a los 1013 hPa de la atmósfera terrestre. Esto representa una centésima parte de la terrestre. La presión atmosférica varía considerablemente con la altitud, desde casi 9 hPa en las depresiones más profundas, hasta 1 hPa en la cima del Olympus Mons. Su composición es fundamentalmente: dióxido de carbono (95,3%) con un 2,7% de nitrógeno, 1,6% de argón y trazas de oxígeno molecular (0,15%) monóxido de carbono (0,07%) y vapor de agua (0,03%).

La atmósfera es lo bastante densa como para albergar vientos muy fuertes y grandes tormentas de polvo que, en ocasiones, pueden abarcar el planeta entero durante meses. Este viento es el responsable de la existencia de dunas de arena en los desiertos marcianos. La bóveda celeste marciana es de un suave color rosa salmón debido a la dispersión de la luz por los granos de polvo muy finos procedentes del suelo ferruginoso. A diferencia de la Tierra, ninguna capa de ozono bloquea la radiación ultravioleta. Hay nubes en mucha menor cantidad que en la Tierra y son de vapor de agua o de dióxido de carbono en latitudes polares.

La débil atmósfera marciana produce un efecto invernadero que aumenta la temperatura superficial unos 5 grados; mucho menos que lo observado en Venus y en la Tierra.

En las latitudes extremas, la condensación del anhídrido carbónico forma nubes de cristales de nieve carbónica.

Júpiter Editar

Artículo principal: Atmósfera de Júpiter
Archivo:790106-0203 Voyager 58M to 31M reduced.gif

La atmósfera de este planeta gigante se extiende hasta muy profundo, donde la enorme presión comprime el hidrógeno molecular hasta que se transforma en un líquido de carácter metálico a profundidades de unos 10.000 km con respecto a la superficie. Más abajo se sospecha la existencia de un núcleo rocoso formado principalmente por materiales helados y más densos.

En la parte alta de la atmósfera se observa una circulación atmosférica formada por bandas paralelas al ecuador y hay una Gran Mancha Roja que es una tormenta con más de 300 años de antigüedad.

Se observan nubes de diferentes colores que refleja que se forman a distintas alturas y con diferentes composiciones. Júpiter tiene un potente campo magnético que provoca auroras polares.

Saturno Editar

La atmósfera de Saturno posee bandas oscuras y zonas claras similares a las de Júpiter, aunque la distinción entre ambas es mucho menos clara. Hay fuertes vientos en la dirección de los paralelos. Hay nubes superiores están formadas probaitdesarrolla fenómenos de auroras por la interacción del campo magnético planetario con el viento solar.

Urano Editar

El planeta Urano cuenta con una gruesa atmósfera formada por una mezcla de hidrógeno, helio y metano que puede representar hasta un 15% de la masa planetaria y que le da su color característico.

Neptuno Editar

Neptuno esta conformado por hidrógeno, helio y un pequeño porcentaje de gas metano, que le proporciona el color azul verdoso. Sus partículas están levemente más separadas de lo que deberían estar por causa de la temperatura que es de -200 °C semejante a la de Urano ubicado a más de 1.500 km, por lo que se estima que tiene una propia fuente de calor.

Un caso único: la atmósfera de Titán Editar

Titán es la única luna conocida con una atmósfera densa. La atmósfera de Titán es más densa que la de la Tierra, con una presión en superficie de una vez y media la de nuestro planeta y con una capa nubosa opaca formada por aerosoles de hidrocarburos que oculta los rasgos de la superficie de Titán y le dan un color anaranjado. Al igual que en Venus, la atmósfera de Titán gira mucho más rápido que su superficie.

La atmósfera está compuesta en un 94% de nitrógeno y es la única atmósfera rica en este elemento en el sistema solar aparte de nuestro propio planeta, con rastros significativos de varios hidrocarburos que constituyen el resto (incluyendo metano, etano y otros compuestos orgánicos.

La presión parcial del metano es del orden de 100 hPa y este gas cumple el papel del agua en la Tierra, formando nubes en su atmósfera. Estas nubes causan tormentas de metano líquido en Titán que descargan precipitaciones importantes de metano que llegan a la superficie produciendo, en total, unos 50 L/m² de precipitación anual.

Atmósferas muy tenues Editar

La Luna Editar

La Luna tiene una atmósfera insignificante, debido a la baja gravedad, incapaz de retener moléculas de gas en su superficie. La totalidad de su composición aún se desconoce. El programa Apollo identificó átomos de helio y argón, y más tarde (en 1988), observaciones desde la Tierra añadieron iones de sodio y potasio. La mayor parte de los gases en su superficie provienen de su interior.

Mercurio Editar

La sonda Mariner 10 demostró que Mercurio contrariamente a lo que se creía, tiene una atmósfera, muy tenue, constituida principalmente por helio, con trazas de argón sodio, potasio, oxígeno y neón. La presión de la atmósfera parece ser sólo una cien milésima parte de la presión atmosférica en la superficie de la Tierra. Los átomos de esta atmósfera son muchas veces arrancados de la superficie del planeta por el viento solar.

Ío Editar

Ío tiene una fina atmósfera compuesta de dióxido de azufre y algunos otros gases. El gas procede de las erupciones volcánicas, pues a diferencia de los terrestres, expulsan dióxido de azufre. Ío es el cuerpo del Sistema Solar con mayor actividad volcánica. La energía necesaria para mantener esta actividad volcánica proviene de la disipación a través de efectos de marea producidos por Júpiter, Europa y Ganímedes, dado que las tres lunas se encuentran en resonancia orbital (la resonancia de Laplace). Algunas de las erupciones de Ío emiten material a más de 300 km de altura. La baja gravedad del satélite permite que parte de este material sea permanentemente expulsado de la luna, distribuyéndose en un anillo de material que cubre su órbita.

Europa Editar

Recientes observaciones del Telescopio espacial Hubble indican que Europa tiene una atmósfera muy tenue (10-11 bares de presión en la superficie) compuesta de oxígeno. A diferencia del oxígeno de la atmósfera terrestre, el de la atmósfera de Europa es casi con toda seguridad de origen no biológico. Más probablemente se genera por la luz del sol y las partículas cargadas que chocan con la superficie helada de Europa, produciendo vapor de agua que es posteriormente dividido en hidrógeno y oxígeno. El hidrógeno consigue escapar de la gravedad de Europa, pero no así el oxígeno.

Encélado Editar

Instrumentos de la sonda Cassini han revelado la existencia en Encélado de una atmósfera de vapor de agua (aproximadamente 65%) que se concentra sobre la región del polo sur, un área con muy pocos cráteres. Dado que las moléculas de la atmósfera de Encélado poseen una velocidad más alta que la de escape, se piensa que se escapa permanentemente al espacio y al mismo tiempo se restaura a través de la actividad geológica. Está compuesta mayoritariamente por agua Las partículas que escapan de la atmósfera de Encélado son la principal fuente del Anillo E que está en la órbita del satélite y tiene una anchura de 180.000 km.

Ariel Editar

Es uno de los 27 satélites naturales de Urano, su atmósfera está compuesta por amoníaco gaseoso y líquido en su superficie y agua.

Tritón Editar

Tritón tiene un diámetro algo inferior que la de la Luna, y posee una tenue atmósfera de nitrógeno(99,9%), con pequeñas cantidades de metano (0,01%). La presión atmosférica tritoniana es de sólo 14 microbares. La sonda Voyager 2 consiguió observar una fina capa de nubes en una imagen que hizo del contorno de esta luna. Estas nubes se forman en los polos y están compuestas por hielo de nitrógeno; existe también niebla fotoquímica hasta una altura de 30 km que está compuesta por varios hidrocarburos, semejantes a los encontrados en Titán, y que llega a la atmósfera expulsada por los géiseres. Se cree que los hidrocarburos contribuyen al aspecto rosado de la superficie.

Plutón Editar

Plutón posee una atmósfera extremadamente tenue, formada por nitrógeno, metano y monóxido de carbono, que se congela y colapsa sobre su superficie a medida que el planeta se aleja del Sol. Es esta evaporación y posterior congelamiento lo que causó las variaciones en el albedo del planeta, detectadas por medio de fotómetros fotoeléctricos en la década de 1950 (Kuiper y otros). A medida que el planeta se aproximó, los cambios se fueron haciendo menores, disminuyendo cuando se encontró en el perihelio orbital (1989). Se espera que estos cambios de albedo se repitan pero a la inversa, a medida que el planeta se aleje del Sol rumbo a su afelio.tenía un anillo que desapareció

Sedna, Quaoar y 2004 DW Editar

No se sabe con certeza su atmósfera aunque se cree que está compuesta por hidrógeno, metano y helio, aunque otros creen que no tienen atmósfera ya que son tan fríos que su atmósfera se habría congelado.

Capas de la atmósfera terrestre Editar

Atmo camadas

Capas de la atmósfera

Troposfera Editar

Artículo principal: Troposfera

Es la capa más cercana a la superficie terrestre, donde se desarrolla la vida y ocurre la mayoría de los fenómenos meteorológicos;tiene unos 8 Km de espesor en los polos y alrededor de 16 Km en el Ecuador.En esta capa la temperatura disminuye con la altura alrededor de 6,5 ºC por Kilómetro.La troposfera contiene alrededor de 75% de la masa gaseosa de la atmóssfera, así como casi todo el vapor de agua.

Estratosfera Editar

Artículo principal: Estratosfera

Es la capa que se encuentra entre los 12 y los 90 km de altura. Los gases se encuentran separados formando capas o estratos de acuerdo a su peso. Una de ellas es la capa de ozono que protege a la Tierra del exceso de rayos ultravioletas provenientes del Sol. Las cantidades de oxígeno y anhídrido carbónico son casi nulas y aumenta la proporción de hidrógeno. Actúa como regulador de la temperatura, siendo en su parte inferior cercana a los -60ºC aumentando con la altura hasta los 10 ó 17ºC en la estratopausa.

Mesosfera Editar

Artículo principal: Mesosfera

Es la capa donde la temperatura vuelve a disminuir y desciende hasta los -90 ºC conforme aumenta su altitud. Se extiende desde la estratopausa (zona de contacto entre la estratosfera y la mesosfera) hasta una altura de unos 80 km donde la temperatura vuelve a descender hasta unos -70 ºC u -80 ºC.

Ionosfera Editar

Artículo principal: Ionosfera

Es la capa que se encuentra entre los 90 y los 800 kilómetros de altura. En ella existen capas formadas por átomos cargados eléctricamente, llamados iones. Al ser una capa conductora de electricidad, es la que posibilitan las transmisiones de radio y televisión por su propiedad de reflejar las ondas. El gas predominante es el hidrógeno. Allí se produce la destrucción de los meteoritos que llegan a la Tierra. Su temperatura aumenta desde los -73ºC hasta llegar a 1500ºC.

Exosfera Editar

Artículo principal: Exosfera

Es la capa externa de la Tierra que se encuentra por encima de los 800 kilómetros de altura. Está compuesta principalmente por hidrógeno y helio y las partículas van disminuyendo hasta desaparecer. Debido a la baja atracción gravitatoria algunas pueden llegar a escapar al espacio interplanetario. Su temperatura diurna alcanza los 2.500 ºC y la nocturna se aproxima a -273 ºC correspondientes al cero absoluto.

Variación de la presión con la altura Editar

La variación con la altura de la Presión atmosférica o de la densidad atmosférica es lo que se conoce como Ley barométrica. No es lo mismo la variación de la presión con la altura en un líquido como el océano que en un gas como la atmósfera y la razón estriba en que un líquido no es compresible y por tanto su densidad permanece constante. Así que en el océano rige la fórmula:

P=\rho \cdot g \cdot h

por lo que si la profundidad h se hace doble la presión también.

Para los gases ideales se cumple la ley de los gases perfectos:

  • Ley de Charles "La densidad de un gas a temperatura constante es proporcional a la presión del gas."

Es decir:

 P=\frac{P_0}{\rho_0} \cdot \rho

ya que

P \cdot V=P_0 \cdot V_0= P \cdot \frac{m}{\rho}= P_0 \cdot \frac{m}{\rho_0}
\rho_0=\frac{M}{22,4} \frac {g}{litro}

donde M es la masa molecular. Para la atmósfera de la Tierra 20% de O2 y 80% de N2 el peso molecular es:

0,2 \cdot 32+ 0,8 \cdot 28=28,96

por lo que

\rho_0 = \frac {28,96}{22,4} \cdot \frac {g}{litro}= 1,293 \frac {g}{litro}=1,293 \cdot \frac {kg}{m^3}

Para una presión de 0ºC y P atmósferas:

\rho=1,293 \cdot P  \frac {g}{litro}


  • Si la presión se mantiene constante "la densidad es inversamente proporcional a la temperatura"

Es decir:

\rho=\rho_0 \cdot  T_0 \frac {1}{T}

ya que:

\frac {V}{T}=\frac {V_0}{T_0}=\frac {m}{\rho \cdot T}=\frac {m}{\rho_0 \cdot T_0}

Ley de la densidad Editar

Combinando ambas llegamos a la ley de los gases perfectos:

P \cdot V=n \cdot R \cdot T=\frac{m}{M}\cdot R \cdot T

así que:

\rho=\frac{P \cdot M}{R \cdot T}

Cálculo de la densidad atmosférica en la superficie de los planetas Editar

Sabiendo que la constante R de los gases perfectos vale:

R=8,313 \cdot \frac {julios}{K \cdot kmol}

y que 1 atmósfera vale:

 1 atm\acute{o}sfera=1,013 \cdot 10^5 \cdot \frac {N}{m^2}

resulta:

Plantilla:Highlight1 | Planeta Plantilla:Highlight1 | Temp. (K) Plantilla:Highlight1 | Presión (atmf.) Plantilla:Highlight1 | Masa molecular M Plantilla:Highlight1 | Densidad (kg/m3)
Tierra 288 1 28,96 1,225
Venus 738 92,8 44 67,42
Titán 95 1,48 28,6 5,43
Marte 215 0,0079 43,64 0,0195

Ley barométrica Editar

En una atmósfera isoterma la presión varía con la altura siguiendo la ley:

P=P_0 \cdot e^{\frac{-M \cdot g \cdot (h-h_0)}{R \cdot T}}

donde M es la masa molecular, g la aceleración de la gravedad, h-h0 es la diferencia de alturas entre los niveles con presiones P y P0 y T es la Temperatura absoluta media entre los dos niveles, y R la constante de los gases perfectos. El hecho de que la temperatura varíe si limita validez de la fórmula. Por el contrario la variación de la aceleración de la gravedad es tan suave que no afecta.

La demostración de la fórmula es sencilla:

La diferencia de presión entre dos capas separadas por un  \Delta h es:

\Delta P=- \rho \cdot g \cdot \Delta h

Pero por la ley de la densidad

\rho=\frac{P \cdot M}{R \cdot T}

Así que:

\Delta P=- \frac{P \cdot M}{R \cdot T} \cdot g \cdot \Delta h

que por integración se convierte en:

\int_{P_0}^{P} \frac {dP}{P}=\frac {-M \cdot g}{R \cdot T} \int_{h_0}^{h} dh  \,

es decir:

 ln (P)-ln (P_0)=\frac {-M \cdot g \cdot (h-h_0)}{R \cdot T} \,

por lo que:

P=P_0 \cdot e^{\frac{-M \cdot g \cdot (h-h_0)}{R \cdot T}}

Incremento de altura Editar

El Incremento de altura es la altura a la que hay que elevarse en una atmósfera para que la presión atmosférica disminuya a la mitad. Para calcularla basta con poner en la ley barométrica P=P_0/2 \, resulta:

\Delta h=\frac{R \cdot T}{M \cdot g} \cdot ln 2 \,

Escala de altura Editar

La Escala de altura es la altura a la que hay que elevarse en una atmósfera para que la presión atmosférica disminuya en un factor e=2,718182. Es decir la disminución de presión es  1-\frac {1}{e}=0,632= 63,2% Para calcularla basta con poner en la ley barométrica P=P_0/e \, resulta:

H=\frac{R \cdot T}{M \cdot g} \,

En función de la escala de alturas H la presión puede expresarse:

P=P_0 \cdot e^{-\frac {(h-h_0)}{H}} \,

y análogamente para la densidad:

\rho=\rho_0 \cdot e^{-\frac {(h-h_0)}{H}} \,


Tambien se puede partir en 4

Cálculo de la Escala de altura en diferentes atmósferas Editar

Basta con aplicar la fórmula anterior para obtener H en metros.

Plantilla:Highlight1 | Planeta Plantilla:Highlight1 | Temp. (K) Plantilla:Highlight1 | Ac. gravedad g (m/s²) Plantilla:Highlight1 | Masa molecular M Plantilla:Highlight1 | Escala altura H (km)</sup> Plantilla:Highlight1 | Incremento altura (km)</sup>
Tierra 288 9,81 28,96 8,42 5,8
Venus 738 8,63 44 16,15 11,2
Titán 95 1,37 28,6 20,15 13,9
Marte 215 3,73 43,64 10,98 7,6
Júpiter (*)160 26,20 (**)2 25,37 17,6

(*)Temperatura K cerca del límite de las nubes.

(**) Puede haber suficiente Helio para aumentar la masa molecular disminuyendo la escala de alturas.

Representación de la variación de la presión con la altura Editar

Archivo:Standardatmosphäre 1976 90km.png

Si representamos el logaritmo de la presión o de la densidad en función de la altura obtendríamos una línea recta si la atmósfera fuese isoterma es decir si la escala de altura no variase con la altura. La escala de altura es pequeña si la temperatura es baja y ello significa que la presión y la densidad decrecen rápidamente. Si la tempreratura es alta la escala es grande y varían suavemente. Pero la escala de altura también depende de la masa molecular y masa moleculares altas hacen disminuir la escala de alturas al igual que planetas grandes con elevadas aceleraciones de la gravedad que también hacen disminuir la escala de alturas y la presión y la densidad decrecen rápidamente.

Así un planeta más grande que la Tierra, con idéntica composición atmosférica y temperatura, la densidad y presión cambian más rápidamente con la altura y se puede hablar de una atmósfera dura frente a un planeta menor en el que H sería mayor y la atmósfera blanda.

La composición de la atmósfera Editar

El aire que forma la atmósfera es una mezcla de gases que además contiene partículas sólidas y líquidas en suspensión. Éstos son algunos (dicho anteriormente) sus componentes más destacados.

  • Nitrógeno: constituye el 78% del volumen del aire. Está formado por moléculas que tienen dos átomos de nitrógeno, de manera que su fórmula es N2. Es un gas inerte, lo que conlleva a que no suele reaccionar con otras sustancias.
  • Oxígeno: representa el 21% del volumen del aire. Está formado por moléculas de dos átomos de oxígeno y su fórmula es O2. Es un gas muy reactivo y la mayoría de los seres vivos lo necesita para respirar.
  • Otros gases: del resto de los gases de la atmósfera, el más abundante es el argón(Ar), que contribuye el 0,9% del volumen del aire. Es un gas noble que no reacciona con ninguna sustancia.
  • Dióxido de carbono: está constituido por moléculas de un átomo de carbono y dos átomos de oxígeno, de modo que su fórmula es CO2. Representa el 0,03% del volumen del aire y participa en procesos muy importantes. Las plantas lo necesitan para realizar la fotosíntesis, y es el residuo de la respiración y de las reacciones de combustión. Este gas, muy por detrás del vapór de agua, ayuda a retener el calor de los rayos solares y contribuye a mantener la temperatura atmosférica dentro de unos valores que permiten la vida.
  • Ozono: es un gas minoritario que se encuentra en la estratosfera. Su fórmula es O3, pues sus moléculas tienen tres átomos de oxígeno. Es de gran importancia para la vida en nuestro planeta, ya que absorbe la mayor parte de los rayos ultravioletas procedentes del Sol.
  • Vapor de agua: se encuentra en cantidad muy variable y participa en la formación de nubes. Es el principal causante del benéfico efecto invernadero
  • Partículas sólidas y líquidas: en el aire se encuentran muchas partículas sólidas en suspensión, como por ejemplo, en polvo que levanta el viento o el polen. Estos materiales tienen una distribución muy variable, dependiendo de los vientos y de la actividad humana. Entre los líquidos, la sustancia más importante es el agua en suspensión que se encuentra en las nubes

Condición actual de la atmósfera Editar

El humano ha alterado la composición química de la atmósfera al utilizar algunos inventos que arrojan a ésta millones de toneladas de gases. Se ha dicho que estos gases serían los que producen el denominado sobre-efecto invernadero, que ocasiona el calentamiento de la atmósfera. Las temperaturas aumentaron durante el siglo pasado. La Agencia para la Protección Medioambiental, de Estados Unidos, informa que “los diez años más calurosos del siglo XX se produjeron en los últimos quince años de este”. Algunos científicos piensan que en el siglo XXI, la temperatura mundial media puede aumentar entre 1,4 y 5,8 °C. Lamentablemente, no se investiga acerca de la deriva que ocasionan las islas de calor urbanas sobre los termómetros de las estaciones meteorológicas cercanas a poblaciones.

Véase también Editar

Enlaces de interés Editar

ar:جو bg:Атмосфера bn:বায়ুমণ্ডল br:Atmosfer (planedennoù) ca:Atmosfera d'un cos celeste cs:Atmosféra cy:Atmosffer da:Atmosfære (himmellegeme)eo:Atmosfero (astro) fa:جو (هواشناسی) fi:Planeettojen kaasukehätgd:Àile he:אטמוספירה hi:वायुमण्डल hr:Atmosfera hu:Légkör ia:Atmosphera id:Atmosfer benda langit io:Atmosfero is:Andrúmsloft it:Atmosferalb:Atmosphär lmo:Atmusfera ml:അന്തരീക്ഷം mr:वातावरण nl:Atmosfeer (astronomie) nn:Atmosfære no:Atmosfære nrm:Atmosphéthe pl:Atmosfera pt:Atmosferascn:Attimusfera sco:Atmosphere sk:Atmosféra (kozmického telesa) sq:Atmosfera sr:Атмосфера небеског тела th:บรรยากาศ tr:Atmosfer uk:Атмосфера ur:کرۂ ہوا uz:Atmosfera yi:אטמאספערzh-min-nan:Tāi-khì-chân zh-yue:大氣層

¡Interferencia de bloqueo de anuncios detectada!


Wikia es un sitio libre de uso que hace dinero de la publicidad. Contamos con una experiencia modificada para los visitantes que utilizan el bloqueo de anuncios

Wikia no es accesible si se han hecho aún más modificaciones. Si se quita el bloqueador de anuncios personalizado, la página cargará como se esperaba.